Business Process Discovery from Emails: Text Classification and Process Mining - A Case Study of Procurement Process


Authors
  • Yaghoub Rashnavadi
  • Sina Behzadifard
  • Kharazmi University, Tehran, Iran
  • Reza Farzadnia
  • Pars Investment Casting co. Tehran, Iran
  • Sina Zamani
  • Kharazmi University, Tehran, Iran
Published in


Abstract
  • Messages and emails are traveling with the speed of light and making communication more accessible than ever, which has transformed organizations to the degree that they generate billions of emails daily to facilitate their operations and processes. This vast corpus of human-generated content is a rich dataset that can benefit businesses. To address the potential application of such data, we propose a framework to mine and extract the implicit information behind the email loops. This article examines the opportunity that email logs can bring to organizations and proposes a framework to discover process models based on a supervised machine learning technique to classify emails to the activities and Fuzzy Miner to extract the process model from the labeled emails. We also examined the framework with a real-life dataset from the procurement department of the case study company in Iran. The findings demonstrated discrepancies between the discovered process model and the designed business process, highlighting the needed improvements.


Keywords
  • Process Mining, Business Processes, Natural Language Processing, Machine Learning, Email Analysis




Cite As
  • APA 7th Edition:
    Rashnavadi, Y., Behzadifard, S., Farzadnia, R., & Zamani, S. (2022). Business Process Discovery from Emails: Text Classification and Process Mining - A Case Study of Procurement Process. Innovatus: Digital Transformation in Business Information Systems, 5(1), 1-10. https://doi.org/10.5281/zenodo.5784812.
  • Harvard:
    Rashnavadi, Y., Behzadifard, S., Farzadnia, R., and Zamani, S., 2022. Business Process Discovery from Emails: Text Classification and Process Mining - A Case Study of Procurement Process. Innovatus: Digital Transformation in Business Information Systems, 5(1), pp.1-10.
  • IEEE:
    [1] Y. Rashnavadi, S. Behzadifard, R. Farzadnia and S. Zamani, "Business Process Discovery from Emails: Text Classification and Process Mining - A Case Study of Procurement Process", Innovatus: Digital Transformation in Business Information Systems, vol. 5, no. 1, pp. 1-10, 2022. Available: 10.5281/zenodo.4646682.


References
  • Alessa, A., Faezipour, M., & Alhassan, Z. (2018). Text classification of flu-related tweets using FastText with sentiment and keyword features. Proceedings - 2018 IEEE International Conference on Healthcare Informatics, ICHI 2018, 366–367.https://doi.org/10.1109/ICHI.2018.00058
  • Banziger, R., Basukoski, A., & Chaussalet, T. (2019). Discovering Business Processes in CRM Systems by Leveraging Unstructured Text Data. Proceedings - 20th International Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018, 1571–1577. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00257
  • Borg, A., Boldt, M., Rosander, O., & Ahlstrand, J. (2021). E-mail classification with machine learning and word embeddings for improved customer support. In Neural Computing and Applications (Vol. 33, Issue 6). https://doi.org/10.1007/s00521-020-05058-4
  • Corston-Oliver, S., Ringger, E. K., Gamon, M., & Campbell, R. (2004). Task-Focused Summarization of E-mail BT - ACL-WS2004A. Proc. of ACL Workshop’04, 1–8. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1433&context=facpub
  • Di Ciccio, C., Mecella, M., Scannapieco, M.,Zardetto, D., & Catarci, T. (2012). MailOfMine - Analyzing mail messages for mining artful collaborative processes. Lecture Notes in Business Information Processing, 116 LNBIP, 55–81. https://doi.org/10.1007/978-3-642-34044-4_4
  • Günther, C. W., & Rozinat, A. (2012). Disco: Discover your processes. CEUR Workshop Proceedings, 936, 40–44.
  • Günther, C. W., & Van Der Aalst, W. M. P. (2007). Fuzzy mining - Adaptive process simplification based on multi-perspective metrics. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4714 LNCS, 328–343. https://doi.org/10.1007/978-3-540-75183-0_24
  • Jlailaty, D., Grigori, D., & Belhajjame, K. (2017). Business Process Instances Discovery from Email Logs. Proceedings - 2017 IEEE 14th International Conference on Services Computing, SCC 2017, 19–26. https://doi.org/10.1109/SCC.2017.12
  • Jlailaty, D., Grigori, D., & Belhajjame, K. (2019). On the elicitation and annotation of business activities based on emails. Proceedings of the ACM Symposium on Applied Computing, Part F1477, 101–103. https://doi.org/10.1145/3297280.3297534
  • Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2016). FastText.zip: Compressing text classification models. ArXiv:1612.03651 [Cs], 1–13. http://arxiv.org/abs/1612.03651
  • Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2017). Bag of tricks for efficient text classification. 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017 - Proceedings of Conference, 2, 427–431. https://doi.org/10.18653/v1/e17-2068
  • Koller, A., & Searle, J. R. (1970). Speech Acts: An Essay in the Philosophy of Language. Language, 46(1), 217. https://doi.org/10.2307/412428
  • Laga, N., Elleuch, M., Gaaloul, W., & Smaili, O. A. (2019). Emails analysis for business process discovery. CEUR Workshop Proceedings, 2371(2), 54–70.
  • Mavaddat, M., Beeson, I., Green, S., & Sa, J. (2011). Facilitating Business Process Discovery using Email Analysis. BUSTECH 2011 : The First International Conference on Business Intelligence and Technology, c, 40–44. http://www.thinkmind.org/index.php?view=article&articleid=bustech_2011_2_30_90043
  • Shing, L., Wollaber, A., Chikkagoudar, S., Yuen, J., Alvino, P., Chambers, A., & Allard, T. (2019). Extracting Workflows from Natural Language Documents: A First Step. In Lecture Notes in Business Information Processing (Vol. 342, pp. 294–300). Springer International Publishing. https://doi.org/10.1007/978-3-030-11641-5_23
  • Turner, C. J., Tiwari, A., Olaiya, R., & Xu, Y. (2012). Process mining: From theory to practice. Business Process Management Journal, 18(3), 493–512. https://doi.org/10.1108/14637151211232669
  • Van Der Aalst, W., Adriansyah, A., De Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T., Bose, J. C., Van Den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J., Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., De Leoni, M., ... Wynn, M. (2012). Process mining manifesto. Lecture Notes in Business Information Processing, 99 LNBIP(PART 1), 169–194. https://doi.org/10.1007/978-3-642-28108-2_19
  • Van Der Aalst, W., Weijters, T., & Maruster, L. (2004). Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128–1142. https://doi.org/10.1109/TKDE.2004.47
  • Van der Aalst, Wil M P, & Nikolov, A. (2007). EMailAnalyzer: An E-Mail Mining Plug-in for the ProM Framework. BPM Center Report BPM-07-16, August, 1–26.
  • Van Dongen, B. F., Alves De Medeiros, A. K., & Wen, L. (2009). Process mining: Overview and outlook of Petri net discovery algorithms. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5460 LNCS (pp. 225–242). Springer. https://doi.org/10.1007/978-3-642-00899-3_13


Cited By
  • No citations found yet